
9.5.8 Capturing Hamiltonian diagnostics and gradients.9.5.6 Changing the NUTS-HMC adaptation parameters.9.5.5 Specifying the metric and stepsize.9.5.2 Changing the default warmup and sampling iterations.9.5.1 Running multiple chains with a specified RNG seed.9.3.1 Samples from a set of fixed parameters.9.2.1 Step size optimization configuration.9 MCMC Sampling using Hamiltonian Monte Carlo.8.3 Initialize model parameters argument.7 Generating Quantities of Interest from a Fitted Model.4.4 Summarizing sampler output(s) with stansummary.4.2.2 Using shell for running multiple chains.



3.5.1 Optimizing by ignoring range checks.3.4 Troubleshooting C++ compiler or linker errors.1.2.3 Clone the GitHub CmdStan repository.
